

DICE/DWF SPECIFICATION

LT3464

Micropower Boost Converter with Schottky and Output Disconnect in ThinSOT^{\rm IM}

DIE CROSS REFERENCE

LTC Finished	Order DICE CANDIDATE
Part Number	Part Number Below
LT3464	LT3464 DWF
LT3464	LT3464 DICE

PAD FUNCTION

- CTRL
 FB
 OUT
 GND
 CAP
 SW
 VIN
- 8. SHDN

12mils thick, backside (substrate) is an alloyed gold layer. Connect backside to V⁻.

ABSOLUTE MAXIMUM RATINGS

(Note 1)

V _{IN} , SHDN, CTRL Voltage	10V
OUT, CAP Voltage	
SW Voltage	36V
FB Voltage	6V

DICE/DWF SPECIFICATION

LT3464

DICE ELECTRICAL TEST LIMITS $T_A = 25^{\circ}C$. $V_{IN} = 3.6V$, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	MAX	UNITS
Minimum Input Voltage			2.3	V
Quiescent Current	Not Switching V _{SHDN} = 0.2V		36 0.5	μΑ μΑ
FB Comparator Trip Voltage	V _{FB} Falling, V _{CTRL} = 3.6V	1.215	1.275	V
FB Pin Bias Current	V _{FB} = 1.25V, V _{CTRL} = 3.6V		30	nA
FB Voltage Line Regulation	2.3V < V _{IN} < 10V		0.1	%/V
Switch Leakage Current	V _{SW} = 36V		1	μA
Switch Current Limit		85	140	mA
Schottky Reverse Leakage	V _{CAP-SW} = 36V		10	μA
PNP Disconnect Q Current	I _{OUT} = 0, V _{CAP} = 36V (Note 3)		5	μA
PNP Disconnect Leakage	$\overline{\text{SHDN}}$ = 0.2, V _{CAP} = 10V, V _{OUT} = 0V		5	μA
PNP Disconnect Current Limit	$V_{CAP} = 10V, V_{OUT} = 0V$	25	75	mA
SHDN Pin Current	$V_{\overline{SHDN}} = 3.6V$		10	μA
SHDN Input Voltage High		2.3		V
SHDN Input Voltage Low			0.2	V
CTRL Pin Bias Current	$V_{CTRL} = 0.5V, V_{FB} = 1V$		80	nA
CTRL to FB Offset	V _{CTRL} = 0.5V (Note 3)		7	mV

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 3: This figure is computed according to ((V_{FB} falling + V_{FB} rising)/2) $-V_{CONTROL}.$

Note 2: Current consumed by Disconnect PNP when there is no load on the OUT pin.

Wafer level testing is performed per the indicated specifications for dice. Considerable differences in performance can often be observed for dice versus packaged units due to the influences of packaging and assembly on certain devices and/or parameters. Please consult factory for more information on dice performance and lot qualifications via lot sampling test procedures.

Dice data sheet subject to change. Please consult factory for current revision in production.

I.D.No. 66-13-3464

LT/LT 0405 PRINTED IN USA

2

© LINEAR TECHNOLOGY CORPORATION 2005